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The boundary layer develops along a flat plate with a Reynolds number high enough 
to sustain turbulence and allow accurate experimental measurements, but low 
enough to allow a direct numerical simulation. A favourable pressure gradient just 
downstream of the trip (experiment) or inflow boundary (simulation) helps the 
turbulence to mature without unduly increasing the Reynolds number. The pressure 
gradient then reverses, and the ,&parameter rises from -0.3 to +2. The wall- 
pressure distribution and Reynolds number of the simulation are matched to those 
of the experiment, as are the gross characteristics of the boundary layer a t  the inflow. 
This information would be sufficient to calculate the flow by another method. 
Extensive automation of the experiment allows a large measurement grid with long 
samples and frequent calibration of the hot wires. The simulation relies on the recent 
'fringe method' with its numerical advantages and good inflow quality. After an 
inflow transient good agreement is observed; the differences, of up to 13%, are 
discussed. Moderate deviations from the law of the wall are found in the velocity 
profiles of the simulation. They are fully correlated with the pressure gradient, are 
in fair quantitative agreement with experimental results of Nagano, Tagawa & Tsuji, 
and are roughly the opposite of uncorrected mixing-length-model predictions. Large 
deviations from wall scaling are observed for other quantities, notably for the 
turbulence dissipation rate. The a, structure parameter drops mildly in the upper 
layer with adverse pressure gradient. 

1. Motivation, and design of the flow 
The boundary layer without pressure gradient has been studied in great detail, and 

its lowest-level scaling laws confirmed over a wide range of its only parameter, the 
thickness Reynolds number (Coles 1962). We are referring to the laws proposed for 
the velocity profile, and probably for the shear stress. Doubts remain for the normal 
Reynolds stresses (Bradshaw 1967b ; Perry, Henbest & Chong 1986; Spalart 1988a; 
Wei & Willmarth 1989; Antonia et al. 1992), not to mention higher turbulence 
moments. The distinction between ' Reynolds-number effects ' and ' low-Reynolds- 
number effects' needs to  be clarified. The much wider parameter space of flows with 
pressure gradient has naturally been explored in less depth. Scaling laws cannot be 
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expected to be as simple, particularly in the upper region, and the available 
prediction methods leave much room for improvement. 

Much of the study of pressure gradients has dealt with so-called ‘equilibrium’ or 
‘ self-similar ’ boundary layers which are subjected to a sustained pressure gradient, 
adjusted with the avowed objective of duplicating the scaling law of the zero- 
gradient flow in the upper region, the ‘defect law’. The wall region is less disturbed 
than the upper region, except close to separation. This concept results in a one- 
parameter family and represents a cautious extension of the theory away from the 
zero-gradient case. There is a lack of consensus as to which pressure distributions can 
generate a self-similar turbulent boundary layer (Clauser 1954 ; Coles 1956, 1957 ; 
Bradshaw 1967a), about the uniqueness of the asymptotic state of the flow in a given 
- especially adverse - pressure gradient (Clauser 1954; Head 1976), and about which 
velocity scale is appropriate in the defect law (Coles 1956; Schofield 1981 and 
references therein). Decisive progress in this area is necessary, but not sufficient for 
the creation of prediction methods accurate in most situations, which are often far 
from being self-similar. 

Experimental results on flows with pressure gradients up to 1968 are listed by 
Coles & Hirst (1968). More recent studies include Jones & Launder (1972), Samuel & 
Joubert (1974), Frei & Thomann (1980), Simpson et al. (1981), Hirt & Thomann 
(1986), Dengel & Fernholz (1990), and Nagano, Tagawa & Tsuji (1992). Adverse 
gradients are of more practical interest -because of separation, of more theoretical 
interest - because the wall shear stress does not dominate the situation, and more 
delicate experimentally - because of their higher sensitivity to upstream conditions, 
their tendency not to remain two-dimensional in the mean, and of the higher 
probability for the instantaneous velocity vector to be at large angles to the mean 
flow direction (this degrades the accuracy of hot-wire measurements). 

As a subject for direct numerical simulation (DNS), turbulent pressure-gradient 
flows add to the perennial obstacles of very large memory and computational time 
new difficulties, arising from non-trivial boundary conditions. Self-similar boundary 
layers were simulated first because of the convenience they afforded in a multiple- 
scale approximation (Spalart & Leonard 1986 ; Spalart 1986). The results were very 
satisfactory in favourable gradients, but much less so in adverse gradients. For the 
same pressure-gradient parameter p, the defect profile was far from agreeing with the 
experiment even though the shear stress did. Possible reasons were: failure of the 
multiple-scale approximation due to much larger growth angles ; failure of the one- 
parameter concept of self-similar boundary layers due to the large Reynolds-number 
difference ; and experimental errors, including in the wall-shear measurement and in 
the two-dimensionality. 

The need to explore this discrepancy, the promise of DNS as a ‘numerical 
experiment ’ with full detail of all quantities and unambiguous wall-shear evaluation, 
and some questions of experimental technique such as the accuracy of X-wires, led 
to  the design and parallel study of a low-Reynolds-number adverse-pressure- 
gradient (APG) boundary layer. The Reynolds numbers in previous experimental 
studies were many times larger than can be considered for a DNS. This paper reports 
on the region of the flow accessible to the simulation, which is only a third of the 
experimental run. The experimental results in the region downstream, in which the 
flow approaches self-similarity , will be presented elsewhere. 

The overall characteristics of the experiment were presented by Watmuff & 
Westphal (1989), and extensive measurements were reported by Watmuff (1990). 
Figure 1 is a sketch of the flow. Lengths are expressed in metres for lack of a better 
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lengthscale and distance from the origin in x. The pressure coefficient C, is ,ased on 
a reference velocity Urer, which is the core velocity at the inlet of the experiment 
(x = 0). A simulation much beyond x = 1 was not contemplated as it would require 
an order of magnitude increase in expenditure, and the present simulation was 
barely feasible. The ‘period ’ and ‘fringes ’ pertain to the numerical method and are 
explained in 93. The pressure gradient is controlled by a contoured ceiling, in the 
experiment. The boundary layer is fully turbulent within the comparison region (the 
experimental boundary layer is tripped at  x = 0.15, and the simulated boundary 
layer is also turbulent at x = 0.4). Its thickness S, taken from the experiment, is 
shown on the figure. 

The Reynolds number per metre based on Uref is 4.28 x lo5. Lower values would 
have reduced the cost of the simulation, but very low Reynolds numbers reduce the 
range of scales so much that they raise questions about the relevance to high- 
Reynolds-number flows. The lowest momentum-thickness Reynolds number R, is 
about 600, which leaves a fair margin for turbulence to be sustained. An additional 
requirement was to choose a sufficient dynamic pressure to allow accurate 
measurements of pressure differences. 

The region of most interest, the APG from x = 0.6 on, is preceded by a favourable- 
pressure-gradient (FPG) region from x = 0.2 to 0.6 (about 35 times the local S), 
following an idea of Inman & Bradshaw (1981). The goal is to let the turbulence 
develop and lose memory of the transition (experiment) or inflow condition 
(simulation) with a smaller increase of R, than would occur with zero pressure 
gradient, and seems to have been achieved. Two non-dimensional measures of the 
pressure gradient are ,!? = S*[dp/dx]/~,, where 6” is the displacement thickness and 
7, the wall shear stress, and K = v[dU,/dx]/U2, where v is the kinematic viscosity 
and U,  the edge velocity. In the FPG they take the values /3 M -0.3 and K M 

1.25 x or about half of the values that (if sustained) would force relamina- 
rization. One of the requests from the simulator to the experimentalists was for 
the FPG region to be self-similar, as discussed by Watmuff & Westphal(l989). In the 
meantime, an advance in the numerical technique (compared with that of Spalart 
1988a) made this unnecessary. However, the presence of the FPG is still considered 
an advantage for physical reasons. 

Inman & Bradshaw (1981) estimate that 20 boundary-layer thicknesses is a 
sufficient distance for turbulence to develop well (as revealed by a logarithmic layer) 
after the trip. Herring & Norbury’s (1967) estimate of the distance needed to obtain 
self-similarity (equilibrium, in Clauser’s sense) is also 20 thicknesses. Jones & 
Launder (1972) found in a sink flow that two boundary layers with different inflow 
thicknesses (R, about 340 and 390) needed about 25 thicknesses before they had the 
same thickness and shape factor. The present experiment has over 30 thicknesses 
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from the trip to  x = 0.6. I n  the simulation the region [0.4,0.6], considered as the 
entry region, represents about 14 boundary-layer thicknesses and proves sufficient to 
heal the boundary layer, primarily because the flow is already turbulent and the 
inflow thicknesses and gross turbulence energy match well. 

The P-parameter rises rather rapidly from 0 around x = 0.63 to about 2 at x = 1, 
the end of the comparison region, so that the boundary layer is far from being self- 
similar (a constant /3 is a necessary condition for classical self-similarity). This not so 
much by design as it is the result of experimental and numerical constraints. 

The free-stream turbulence level in the experiment is discussed below. In the 
simulation, free-stream turbulence is not intentionally introduced. Fine-scale 
turbulence cannot be supported by the grid, which rapidly coarsens in the y-direction 
outside the boundary layer. Irrotational velocity fluctuations with lengthscales of 
the order of the distance from the wall are naturally induced by pressure forces and 
are of the order of 1 % of the edge velocity near the edge of the boundary layer. Small 
vorticity fluctuations also exist, induced by numerical errors. No attempt was made 
to match any of the characteristics (intensity, lengthscales) of the free-stream 
turbulence. 

2. Experimental technique 
2.1. Wind tunnel and probe traverse 

The experiment was performed in a blower-driven open-return wind tunnel in the 
Fluid Mechanics Laboratory a t  NASA Ames Research Center. A description of the 
facility is given by Wood & Westphal (1988). Since then a new 5 : 1 two-dimensional 
contraction with exit dimensions of 1.0 by 0.24 m and a new working section have 
been installed. The layer develops on a 1.0 m wide by 2.1 m long polished aluminium 
plate forming the test-section floor. A flexible ceiling is contoured t o  produce the 
pressure distribution and two Plexiglas sidewalls complete the test section. 

A high-speed three-dimensional computer-controlled probe traverse is integrated 
into the test section. The range of motion is 2.1 m in the x-, 0.1 m in they-, and 0.5 m 
in the z-directions. Linear stepping motors are used for the y- and z-axes to obtain 
accurate (k0.025 mm) as well as high-speed (1.5 m/s) positioning. Probes are fixed 
to a sting which is carried by the y-axis motor. The y-axis motor rides on a steel 
platen which is attached to the z-axis motor, linear bearing and platen assembly. The 
z-axis assembly is supported above the test wall within the working section by a 
gantry which spans the distance between the side-walls. The gantry is constructed of 
carbon-fibre composite and plates are fixed to each end which protrude through gaps 
left between the edges of the test plate and the side walls. Overlapping rubber strips 
are used to seal the gaps. The end plates are attached to carriages located beneath 
the test-plate which move on linear bearings in the x-direction. A brushless linear d.c. 
motor is attached to one of the x-axis carriages for streamwise positioning. The motor 
reacts with a long magnet track to provide a maximum propulsive force of 350 N. 
The motor is operated as a closed-loop servo system with feedback provided by a 
linear quadrature encoder with a resolution of 10 pm. The friction introduced by the 
rubber seals and the linear bearings limit the positional accuracy to + O . l  mm. By 
itself the gantry weighs only about 2 kg which is only 10% of the total movable 
mass. Loading the gantry with a 10 kg weight in the centre of its 1 m span results in 
a deflection of only 0.05 mm, showing that it is very stiff. 

Locating the traverse hardware for the y- and z-axes within the test section is 
the most convenient way of implementing the three-dimensional capability. The 



A turbulent boundary layer with pressure gradients 341 

projected area in the streamwise direction of all the apparatus located within 
the tunnel is equivalent to a 30 mm-thick object spanning the tunnel sidewalls, so 
the blockage is not excessive. Nevertheless the traverse presents a severe disturbance 
in the downstream flow and preliminary measurements were performed both with 
and without the traverse in the working section in order to estimate its upstream 
influence. As a result of these observations probe tips are located 0.4 m upstream 
of the gantry, which is about twice the maximum distance for which the disturbances 
could be detected during these tests. 

The three-dimensional capability offers several advantages compared to a more 
conventional arrangement. For example, hot-wire probes must be calibrated 
frequently in a uniform stream. If a more conventional single-axis traversing system 
were used in this experiment then the probes would have to be transferred manually 
back and forth between the calibration region and measurement stations. This would 
consume valuable time as well as introducing the risk of breaking the fragile and 
expensive probes. With the computer-controlled three-dimensional traverse this 
operation can be performed in a matter of seconds with minimal risk of probe 
damage. Additionally, the traverse acts as a shaker for imposing accurately known 
velocity perturbations on the cross-wire probes for calibration purposes as described 
in $2.5.2. Other benefits of the traversing system are described in $2.6. Finally, it is 
worth noting that the streamwise speed of the traverse has been tested at 2 m/s 
which is sufficient for ‘flying hot-wire’ measurements in regions of high turbulence 
intensity (see Watmuff, Perry & Chong 1983). However, it has not been necessary to 
exploit this feature in this experiment. 

2.2. Selection of a transition device 
The boundary layer on the test plate has its origin upstream and is influenced by the 
pressure gradients and wall curvature within the contraction. The low-Reynolds- 
number requirement of this experiment makes the quality of the incoming laminar 
boundary layer more important than usual. Laminar boundary layers are especially 
sensitive to adverse pressure gradients and are prone to separate, causing increased 
unsteadiness. Laminar boundary-layer profiles were measured with a Pitot tube at  
x = 0.083 for a number of free-stream velocities ranging from 6 to 12 m/s. The 
pressure gradient was zero along the entire test section for these measurements. All 
the profiles were found to be very close to the Blasius profile. In particular the 
boundary layer corresponding to Uret x 6.5 m/s used in the experiment had a shape 
factor H = 2.45, close to that of the Blasius profile, H = 2.59. 

The low-Reynolds-number requirement also means that measurements are needed 
close to the tripping device. The effect of a simple cylindrical wire has been the 
subject of many studies, see Schlichting (1979, p. 537) for a review. More recently 
there have been observations of spanwise irregularities in the boundary layers behind 
trip wires and many workers have suggested that distributed three-dimensional 
roughness elements may be superior for transition purposes. However, we are not 
aware of a systematic parametric study that offers a reproducible alternative to a 
trip wire. The observed irregularities have varying strengths depending on the 
facility. There is evidence to suggest (see Bradshaw 1965) that the observations are 
more closely coupled with wind-tunnel screens than with trip wires. 

For the reasons outlined above a cylindrical wire was selected to bring about 
boundary-layer transition. The diameter and streamwise position for a number of 
wires were determined using the guidelines reported by Schlichting in conjunction 
with the laminar velocity profiles. Boundary-layer profiles were measured behind the 
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trip wires in a zero pressure gradient. Satisfactory results were obtained with 1.7 mm 
and 2.0 mm (diameter) wires positioned near the contraction exit. However at a 
location 0.15 m downstream of the contraction the 1.7 mm wire failed to produce 
transition at  all, while the 2.0 mm wire produced intermittent transition. This is 
probably due to the adverse pressure gradient (not measured) near the exit of the 
contraction. Reliable transition was obtained with a 2.4 mm diameter wire at x = 
0.15 m. Measurements of C,, 8 and H indicated that a ‘normal’ boundary layer was 
established behind the 2.4 mm wire by x = 0.35 m (approximately 206 downstream 
of the wire) corresponding to Re, w 500. 

As mentioned previously, the reference velocity U,.,, at the entrance to the test 
section is around 6.5 m/s, corresponding to the reference unit Reynolds number of 
4 . 2 8 ~  lo5 m-l which is maintained constant to within + 1 %  during all mea- 
surements. The free-stream turbulence intensity in the test section near the exit of 
the contraction is 0.2%. 

2.3. Mean-flow two-dimensionality 
Spanwise surveys of C, were conducted at 5 mm intervals in the z-direction and at 
50 mm intervals in the x-direction. At x = 0.4 the spanwise variation of C, is within 
- + 1.5% over 286; at x = 0.6, k 1.2% over 246; at x = 0.8, &l.8% over 176; and at 
x = 1 .O, & 3.1 % over 126. Figure 6 shows that the streamwise momentum balance 
of the experimental data is satisfactory. These results indicate that the layer is 
acceptably two-dimensional. 

2.4. Pressure and skin-friction measurements 
The pressure differences in the test section are measured using a MKS Baratron 398H 
differential pressure transducer with a range of 133 Pa and a 270B signal conditioner. 
A Pitot-static tube located near the exit of the contraction is used for the reference 
total and static pressures. The static pressure is used as the reference pressure for the 
transducer. A traversing Pitot tube, 44 static wall pressure tappings, and the 
reference total and static pressures are connected to the transducer via a 48-port 
Scanivalve pressure switch under computer control. A pause of 5 s  after the 
connection allows the pressures to stabilize before reading the transducer and all 
averages are obtained over at least 90s. Transducer drift was also non-existent. 
However, as a precaution, the reading obtained by connecting the same static 
reference pressure across the transducer was always subtracted from each 
measurement. 

It is well known that Pitot tubes suffer from wall-proximity effects and a variety 
of correction schemes exist. However, it is uncertain which is the most appropriate 
for boundary layers. Local static pressures have not been measured away from the 
test surface and the Pitot tube data are reduced using the static pressure at the wall. 
The local static pressure throughout the layer will differ slightly from the wall static 
pressure owing to mean streamline curvature. Also, the Pitot-tube mean-flow data 
show some scatter, especially in the near-wall region, because of the small pressure 
differences. For these reasons the normal hot-wire mean flow data are presented 
instead of the Pitot tube data. 

The experimental C, variation shown in figure 2 below acts as a data base for 
inferring the local static wall pressure for all pressure-probe measurements. The C, 
data base was created by averaging the results of a number of runs performed several 
months apart. There is no discernible trend in the data taken at  the different times. 
During each run 15 separate measurement cycles of the local static pressure, and 
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reference total and static pressures were performed in succession and averaged to 
produce the resultant C,. Using these rather long total averaging periods of around 
20 min for each C, produced an extremely smooth distribution. 

The distribution of the skin friction coefficient C, along the tunnel centreline was 
measured with nine Preston tubes ranging in diameter from 1.5 to 7.9mm. The 
pressure difference between the Preston tube and the local static pressure AP can be 
very small owing to the low velocities in the test section. Further, AP is obtained by 
subtraction of two relatively large numbers. Therefore long time-averaging periods 
were necessary to obtain smooth results. Fifteen separate measurement cycles of the 
Preston tube pressure, and reference total and static pressures were performed in 
succession for each tube at  each x-position. The Cf was calculated from the averaged 
pressures using the calibration of Patel (1965). Towards the end of the APG region 
AP can be as small as 1.5 Pa. Therefore errors of 1 % in the reference total pressure 
(z 25 Pa) or in the C, data base lead to errors of % 15% in AP. I n  the FPG the 
larger-diameter tubes protrude into the upper region, where the mean flow deviates 
from the law of the wall. Consequently the C, estimates from each of the nine tubes 
have been averaged using the selection criteria that the non-dimensional diameter 
d+ < 100 and that A€’ > 2.5 Pa. 

The accuracy of C, measurements by Preston tubes needs to be scrutinized since 
the pressure gradient parameter p+ = v/(pu,“) dP/dx exceeds the limits suggested by 
Patel (1965) in both the FPG and APG regions. McDonald (1968) used empirical 
information and similarity arguments for the mixing length to estimate the effect of 
pressure gradients on the law of the wall. Deviations from the law of the wall were 
expressed in terms of p+. In  our flow -0.009 < p+ < 0.02 and his results indicate 
deviations from the law of the wall as high as 8 %. However, for a sink flow his 
predictions indicate a negative deviation, in sharp disagreement with both the 
experiments of Jones & Launder (1972) and the numerical simulations of Spalart 
(1986). Therefore the accuracy of McDonald’s predictions seems questionable. Frei & 
Thomann (1980) compared the wall shear stress T, measured directly with a floating 
element to values inferred from Preston tubes in axisymmetric boundary layers. 
Using dimensional arguments, they extended Preston’s original relation, i.e. 

Frei & Thomann suggested that upstream-history effects could be accounted for by 
considering only the first derivative of the pressure distribution, dP/dx. They offered 
an empirical correction scheme for the zero pressure gradient calibration based on 
results using two pressure distributions in which the second derivatives were positive 
and negative respectively. The correction scheme worked equally well in both cases. 
For the range of d+ and p+ in this experiment their scheme indicates that the errors 
are less than 3%. However, in subsequent work Hirt & Thomann (1986) subjected 
boundary layers to sudden application and removal of adverse pressure gradients 
thus pushing the layers far from equilibrium. Preston-tube errors of up to 10 % were 
observed. They found that the relationship suggested by Frei & Thomann was not 
as general as expected and unfortunately no parameters could be found to correlate 
the errors, so that it is difficult to apply these more recent results to our flow. 

The results from the nine Preston tubes cover the range 20 < d+ < 100 and the Cf 
are within f 3 % .  Following the observations of Hirt & Thomann and Frei & 
Thomann, the Cf variation might be expected to follow a trend with tube diameter. 
However the C, variation appears uncorrelated with d+. Moreover, the experimental 
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mean velocity profiles follow both the sublayer profile and the logarithmic law fairly 
closely. The most significant differences appear in the FPG region where there are 
deviations from both the sublayer profile and the logarithmic law. This question will 
be discussed in depth in 94, with the help of the numerical results. 

2.5. Hot-wire measurements 
2.5.1. Hot-wire probes 

Modified Dantec 55P05 normal and 55P51 cross-wire probes are used for the 
turbulence measurements. The prong separation is reduced and the prongs are 
stiffened with the addition of a small web. Wollastan wire is soldered to the prongs 
and etched to produce filaments 2.5 pm in diameter and 0.5 mm in length (7.5 < 
Z+ < 13). The distance between the cross-wire filaments is 0.2 mm. The same normal 
and cross-wire probes and wires have been used for all the measurements. 

Perry, Lim & Henbest (1987) found substantial differences between profiles of 
the Reynolds shear stress rn measured in a rough-wall boundary layer where 
the turbulence intensities are large compared to the mean velocity. The differences in 
m were found to depend on the included angle between the cross-wire filaments and 
on whether the probe was stationary or 'flying' upstream. The differences between 
the stationary and flying results were substantial for conventional probes where 
the included angle is nominally 90". Only small differences were observed when the 
included angle was increased to 120". By tilting the probes in a uniform stream Perry 
et al. found that a flow angle of 45" could be imposed on the probe with the 120" 
included angle without appreciable error, whereas the probe with 90" included angle 
started to show errors at flow angles as low as 20". 

Since quite high relative turbulence intensities are experienced in the APG region, 
the included angle between the cross-wire filament is set to 110" which is about the 
maximum possible angle considering the probe geometry. The axis of the cross-wire 
probe is tilted a t  an angle of 4" towards the test plate in order to obtain 
measurements close to the wall. Therefore the angles between the normal of each wire 
and the streamwise direction are 39' and 31" respectively. Histogram estimates of 
the probability density function of the instantaneous flow angle 8 relative to V have 
been measured at various x- and y-positions in the layer and Pr [ - 20" < 0 < SO"] 
> 0.995 in the most strongly turbulent regions. Therefore the errors described by 
Perry et al. should be insignificant. 

Wall distances are set using the electrical contact of a needle with the test plate. 
The wall distance is calibrated by focusing a telescope on the filaments and their 
images in the wall. The telescope is also used to ensure accurate alignment of the 
filaments with respect to the wall. When the cross-wire probe is aligned normal to 
the wall (i.e. for U- and V-measurements) the wall distance is taken to be between the 
wall and the point where the filaments appear to cross when viewed from the side. 
When the cross-wire probe is aligned for U and W measurements the distance is taken 
to be between the wall and the midpoint of the filaments. The closest data point to 
the wall is 0.2 mm for the normal wire, and 1.2 mm for cross-wires. 

2.5.2. Hot-wire calibration and data reduction 
The wires were operated with Dantec 55M10 constant-temperature hot-wire 

anemometers at a nominal resistance ratio of 1.8. The anemometers were operated 
with a flat response for the feedback amplifier and the system response of 75 kHz is 
more than adequate for the measurements. A d.c. voltage is subtracted from the 
anemometer outputs and the resulting signals are amplified so that they lie between 
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k 10 V over the range of velocities to be experienced by the wires. The signals are not 
filtered. 

The hot-wire signals are acquired and processed in real time using a high-speed 15- 
bit Tustin X-1500 analog-to-digital converter (ADC) and a microVAX I1 computer. 
Two arrays are set aside in computer memory and double-buffered data acquisition 
is used to process the data in one array while data are being acquired in the alternate 
array. The ADC contains a 16K hardware buffer which is connected to the computer's 
high-speed digital interface. While processing previously acquired data, there are 
clock cycles when the CPU does not need to access memory and control of the bus 
can be relinquished temporarily. The interface can use these clock cycles for data 
transfers using a Direct Memory Access technique outside of program control. Hence 
there is a high degree of true parallelism between data acquisition and data 
processing. 

A more complete description of the real-time data acquisition and processing 
techniques is given by Watmuff (1992) in addition to the cross-wire calibration and 
data reduction algorithm described below. The method assumes an unmodified 
cosine cooling law, i.e. the component of the velocity vector along the wire is assumed 
to make no contribution to the heat transfer. The effective cooling velocity of each 
wire can be expressed as functions fl(El) and f 2 ( E 2 )  of the amplified outputs El and 
E,, i.e. 

where U is the velocity component in the streamwise direction, V is the velocity 
component perpendicular to the streamwise direction and in the plane of the prongs, 
and $el and $e2 are the effective angles that the normals to each wire make with the 
streamwise direction. The difference between the effective angle and the actual wire 
angle compensates for not accounting for the longitudinal cooling velocity. Watmuff 
(1992) used a simulation to show that the compensation introduced by using effective 
wire angles leads to a calibration in which the errors are small for moderately large 
flow angles. For example, the errors (Uo- Ui)/Ui z 2% and (E- q)/Ui z 0.5% for 
typical wires when the out-of-plane velocity component is zero and the flow angle is 
25'. (The subscript i refers to velocities imposed on the wires, while subscript o refers 
to output velocities as calculated from the calibration.) 

A more convenient formulation of (2) is given by 

where g,(El)  = fl(El)/tan $el and g,(E,) = f,(E,)/tan +e2. One advantage is that 
gl(E,) and g2(E,) can be determined by a simple static calibration (where it is 
assumed that V = W = 0). It is common practice to estimate $,. and $e2 by tilting 
the wires in a uniform stream. However, in this experiment tan $el and tan $ez are 
estimated by using the traverse to impose known values of V (or W) on the probe 
while holding U constant. A voltage proportional to  motor speed is derived from the 
motor step pulses. The V (or W )  perturbation is imposed by oscillating the probe in 
the y-direction (or x-direction) and the wire voltages and the motor speed voltage are 
sampled on the basis of the position of the motor and averaged over 50 cycles. The 
magnitude of the effective wire angles could be evaluated using r.m.5. quantities. 
However, the values of tan Pel and tan $ez are obtained from a linear least-squares 
fit applied to the perturbations of gl(E,) and g2(E,) as functions of the motor velocity. 

12 FLM 249 
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The advantage of this method is that the sign is obtained in addition to the 
magnitude. The assumption of simple cosine cooling is vital for the high-speed data 
reduction algorithm because the calibration inversion is then linear with respect to 

where CU1 = tan@JAt, CUz = tan@,,/At, Cvl = - l /A t ,  Cvz = l / A t  and 
At = tan $e2- tan 

Look-up tables (LUTs) are commonly used in real-time data acquisition/ 
processing applications when the transducer calibration is nonlinear. Using an LUT 
decreases the data processing time since the nonlinear calibration inversion 
calculations have to be performed only once for the storage. Linear interpolation 
schemes are generally used in conjunction with LUT arrays since the number of 
array elements can be minimized (within the constraints of linearity). However, the 
advantage of reduced memory requirements is offset by the computational overhead 
required for the interpolation and this serves to reduce the overall throughput. The 
interpolation can be avoided if the number of LUT array elements corresponds to the 
measurement resolution exactly over the full range. For example, if the transducer 
voltage is measured with a 15-bit ADC, then the LUT array of maximum density 
would consist of 32768 (215) words. In this case the calibration inversion can be 
stored for every possible value returned by the ADC and no interpolation is required. 
Further, the ADC word can be used directly as the index of the LUT array. 

LUTs of maximum density are practical when the calibration can be expressed in 
terms of a single variable, such as velocity for a normal hot-wire probe, since the LUT 
is one-dimensional. However, a cross-wire calibration is bivariate and two- 
dimensional LUTs must be used if there are any terms containing cross-products of 
E,  and E,. It is impractical to use two-dimensional LUTs of maximum density owing 
to the excessively large memory requirements. Each LUT array would need to 
consist of 2s0 elements when using the 15-bit ADC mentioned above, so that the total 
size of the LUT arrays would have to be 8 Mbytes to avoid interpolation (allowing 
4 bytes per element). The calibration scheme given by (4) does not contain cross- 
product terms so that it is practical to use a pair of one-dimensional LUTs of 
maximum density and linear interpolation can be avoided. This is the fastest possible 
method for evaluation of the functions g,(E,) and g,(E,). 

It should be emphasized that the nonlinearity of the calibration is incorporated 
into the LUTs and that once g,(E,) and g,(E,) are known, the remaining calibration 
inversion calculations are linear. It is this linearity that allows an algorithm to be 
devised for the calculation of the mean flow and Reynolds stress components that 
does not require the LUT values of g,(E,) and g,(E,) to be converted to U and V for 
every sample of El and E,. Only running totals of gl(El) and g,(E,) and their squares 
and cross-product need to be evaluated for final averaging. The mean flow and 
Reynolds stress components can all be calculated from the final averages using 
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Avoiding the conversion to U and V reduces the number of floating point calculations 
Nf required for each pair of samples from Nf = 14 (7 multiplications and 7 additions) 
to Nf = 8 (3 multiplications and 5 additions), i.e. the number of floating point 
calculations is nearly halved. Watmuff (1992) has extended the algorithm for the 
determination of triple products such as A. 

As mentioned previously, Watmuff (1992) used a simulation to examine the errors 
in discrete realizations of U and V introduced by the assumption of simple cosine 
cooling. In  an effort to explore the errors introduced in turbulence quantities he also 
performed a Monte Carlo simulation by generating a pseudo-random time series of 
(U,  V ,  W) with a covariance matrix representative of turbulent flows. The simulation 
examined the effect of high turbulence levels, both with and without a w’ component, 
for both a ‘perfect’ calibration and a calibration based on the algorithm described 
above. The errors in the mean flow and turbulence quantities were less than 1% 
when w’ = 0 for both calibrations, even for relatively high turbulence intensities e.g. 
u,, = 20 YO. However, the errors introduced by w’ were significant for all quantities 
using both calibrations, with the exception of 2 in the case where longitudinal 
- cooling was accounted for. The results of the simulation suggest that the errors in m, 
v2 and 2 due to the out-of-plane velocity component are of similar magnitude and 
could reach values as large as - 5 % to - 10 % in the most highly turbulent regions 
(i.e. near the wall towards the end of the FPG). No attempt was made to correct the 
cross-wire data for wf fluctuations. 

The wires are calibrated against the reference Pitot-static tube in the zero- 
pressure-gradient region at x = 0.1 m. Ten operating points are used over the range 
of velocities to be experienced by the wires. By repeating hot-wire measurements at 
the same position it was discovered that the most consistent data in the near-wall 
region are obtained if the zero-velocity operating point is included in the calibration. 
The condition when the tunnel fan become stationary is determined by monitoring 
short-term averaged hot-wire voltages as the flow slows down. Hot wires are very 
sensitive at zero velocity and small background draughts can cause large voltage 
fluctuations. However, there is evidence to suggest that flow reversals occur in this 
situation, i.e. the velocity time history does contain points of exactly zero velocity 
at  which point the hot-wire signals are subject to rectification. The operating point 
corresponding to zero velocity is taken to be the minimum voltage observed during 
a 30 s period after the tunnel fan becomes stationary. No attempt is made to account 
for the effects of natural convection. Third-order least-squares polynomial fits to the 
calibration data are used to generate LUTs for the functions g,(E,) and g,(E,). By 
carefully tuning various parameters such as the sampling rate and sample size, the 
combination of the double-buffered data acquisition/processing scheme and the new 
cross-wire data reduction algorithm provides a maximum on-line mean-flow and 
Reynolds-stress evaluation rate of 10k samples/s, even though bounds checking is 
used for the LUT arrays and the running totals are evaluated in double precision. 
Moreover, this data reduction rate can be sustained indefinitely so that an arbitrarily 
large number of samples can be processed. A similar calibration and data-processing 
scheme is used for the normal wires. However, the data reduction is much simpler 
since the LUT returns the streamwise velocity directly. The decreased computational 
overhead means that the maximum normal-wire data reduction rate is 25k 
samples/s. 

In  the FPG region the sampling rate was typically 7.5 kHz and 10 sets of 30k 
samples were found to produce adequate data convergence at  each data point. In the 

12.2 
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APG the sampling rate was reduced and more samples were required to achieve a 
similar degree of smoothness in the data. 

2.6. Automation of the experiment 
Total computer control of tunnel speed, probe traversal and data acquisition has 
allowed all experimental procedures to be automated. Sophisticated software enables 
long-duration experiments to be performed continuously over several days without 
manual intervention. This mode of operation required several significant new 
developments. For example, large and complex three-dimensional measurement 
grids can be programmed and viewed ahead of time. Hot-wire calibration drift is 
monitored and new calibrations are performed (automatically) if the drift exceeds 
some tolerance. Other features that have proved vital for long-duration unattended 
experimental runs include automatic error-detection/recovery schemes and the 
provision of 'emergency ' asynchronous manually initiated software interrupts for 
hardware checkouts and to provide access to approximately 125 menu-settable 
control variables. 

Automation of the experiment allows massive quantities of data to be processed 
on-line over a relatively short period. Spatially dense mean-flow and Reynolds-stress 
profiles have been measured along the tunnel centreline at 50 mm intervals from 
x = 0.2 to 2.0 m, i.e. 37 profiles. The close spacing of the profiles is needed in the region 
of FPG to examine the recovery from upstream trip effects and the approach to self- 
similarity and in the region of APG where there is rapid growth with streamwise 
distance. The spacing of the profiles also provides a sensitive means for detecting 
anomalous data. The data downstream of x = 1 .O m indicate that the flow approaches 
self-similarity. These results will be presented elsewhere. 

The greatest obstacle in obtaining high-quality data has been hot-wire calibration 
drift caused by large changes in ambient temperature. Variations of up to 15 "C are 
typical over a 24-hour period while changes of up to 3 "C have been observed over 
a period as short as 5 minutes. Automation of the experiment has provided a solution 
to this thorny problem, i.e. hot-wire profiles are repeated until the drift check 
obtained after a profile is measured is within a certain tolerance of a drift reference 
taken immediately after the wires have been calibrated. Setting the drift tolerance 
at  0.5% (larger tolerances introduce too much scatter in the data) has meant that 
on average a profile must be measured 5 times before it is acceptable. At  the time of 
writing over 1000 normal- and cross-wire profiles have been measured. 

3. Numerical technique 

3.1.  Presentation of the fringe method 
This work involves a new application of an established numerical method (Spalart, 
Moser & Rogers 1991). It solves the incompressible Navier-Stokes equations over a 
flat plate, at  y = 0, with periodic conditions in the x- and z-directions, parallel to the 
plate. The spatial discretization is spectral, making use of Fourier series in x and z 
and Jacobi polynomials matched to an exponential mapping in y. The temporal 
discretization is by a hybrid second-order-accurate finite-difference scheme (Spalart 
et al. 1991). 

Usually, periodic conditions can be used only if the turbulence is statistically 
homogeneous in the direction considered, and boundary layers are almost never 
homogeneous in the x-direction. In the past this conflict was addressed by 
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considering flows that are only slightly inhomogeneous in x, and introducing a 
multiple-scale approximation. This led to a mathematical problem that was 
homogeneous in x, and whose solution was closely related to that of the true spatially 
evolving problem a t  a given station X (Spalart 1986, 1988a). This modified problem 
consisted of the Navier-Stokes equations, with the addition of small ‘growth terms ’. 
This strategy was successful in the sink flow, with a sustained FPG, and in the flow 
with zero pressure gradient. If the pressure gradient is applied suddenly and/or is 
strong and adverse, the assumption of slight inhomogeneity fails. In  addition, the 
multiple-scale method was somewhat crude, and algorithmic constraints prevented 
the inclusion of one of the growth terms (Spalart 1988a). There has been no evidence 
- either poor comparison with experiment or lack of internal consistency - that the 
growth-term approximation compromised the solutions. Nevertheless, it introduced 
an uncertainty into the method, which was more significant in the upper part of the 
boundary layer. 

These considerations and the desire to  treat more strongly inhomogeneous flows 
led to a new approach. As an example, we are conducting the simulation of a small 
separation bubble with the new method (Coleman & Spalart 1993), which would be 
impossible with the growth-term approach. Periodic conditions are still applied and 
extra terms added to the equations (because of the decay of momentum and kinetic 
energy, this is unavoidable if a statistically steady state is to be obtained). However, 
within the period in x we distinguish a ‘fringe region’ in which the extra terms are 
finite, and a ‘useful region’ in which they are zero and therefore the Navier-Stokes 
equations apply. See figure 1 .  Instead of growth terms that were small, derived from 
an approximation, and active over the whole domain, we have extra terms that are 
finite and arbitrary, but confined to the fringe. Only the results in the useful region 
will be compared to the experimental data. Issues of credibility now arise only at the 
interfaces between fringe and useful region. These interfaces act as an inflow and 
outflow boundary for the useful region (fluid particles travel through the useful 
region, then the fringe, then again the useful region). Naturally there are other 
vehicles of information such as pressure signals. Note that credibility a t  the outflow 
and especially a t  the inflow must be established in any inflow-outflow situation, 
whether numerical or experimental. This is discussed in 53.5. 

3.2 .  Implementation 
We divide the velocity field U into U, + U, + U, + U,, where U, is the unknown, U, 
and U, are prescribed, and U, is a correction that depends weakly on U,. The role 
of U, is to input the desired slip velocity for the flow over the boundary layer, and 
therefore indirectly the mean pressure gradient, while satisfying the no-slip condition 
a t  the wall. We define the ‘slip velocity’ as the extrapolation across the boundary 
layer, down to y = 0, of the velocity in the irrotational region. The notion of ‘edge 
velocity’ that is so familiar in boundary layers is hardly useful in a Navier-Stokes 
calculation with pressure gradients because in the free stream the velocity satisfies 
U,, + U,, = 0 ; in general U,, and therefore U,, are not zero, thus preventing U from 
approaching a constant as y +  03. I n  addition, in a DNS, imposing the average 
velocity given by the experiment as a boundary condition a t  or even near the edge 
of the boundary layer would be incorrect, since there are turbulent fluctuations 
there. Such a boundary condition would at the least need to be compliant in some 
manner. These factors account for the seemingly contrived manner in which the free- 
stream ‘ boundary condition ’ is applied here. 

Assume that a ‘target ’ slip velocity distribution U,,(z) is given over the interval 
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[zo, xo+A,] and is periodic, and let oow(k) be its Fourier transform. The Fourier 
transform o o ( k ,  y) of Uo(x, y)  is then prescribed as follows : 

.li,(k,Y) = 0ow(4 [cosh(k[Y-Y,I)-cosh (kYz)exP (-Y/Y3)L 

Bo(k,Y) = -iQw(4 [sinh (~[Y-Y,l)-sinh(kYz)exP (-Y/Y3)1, 

(7a )  

(7 b)  

where y3 = tanh(ky,)/k. The variables o3 and 03,,, will be related by the same 
formula. The Uo field satisfies the no-slip condition, is divergence free, and is 
irrotational except close to the wall, within a region of thickness a few times yz. 
Formulae somewhat different from (7)  can satisfy these requirements, and have been 
used. The lengthscale yz is chosen to be about 5 of the minimum expected boundary- 
layer thickness Smin (so that Uo is essentially irrotational outside the boundary layer) 
and is not critical since altering yz within reasonable limits merely transfers part of 
the velocity field from U, to U,. U, contains only long waves, so that ky, 4 1 and y3 
is close to yz. 

Note that Uo is unbounded as y + 00. This does not cause problems because the 
quantity that enters the momentum equation, in rotational form (which we use, see 
Spalart et al. 1991), is U x o and the vorticity w is very small outside the boundary 
layer. In  the worst case, o decays at the rate exp ( - y/yo), where yo is the mapping 
parameter and is here 0.012, and U, grows like exp (ky). The largest k involved in Uo 
here is lOn, so that the integral of U, x o converges. In addition, the elevation of the 
highest grid point of the numerical method is not large compared with A,, and OOw(k) 
is sizeable only for the first few values of k (because U,,,(x) is smooth). As a result, 
quantities such as sinh (ky) do not take values larger than about 12 in the present 
simulation. 

We recognize that the unbounded growth of Uo as given by (7) would cause serious 
problems in a numerical method that is not in rotational form, and formally extends 
to 00 in y. It may seem as if the fringe method is dependent on some aspects of our 
numerical method, which would reduce its general value. This assessment would be 
too negative, because there is no conflict between the fringe method and the use of 
a truncated domain in y. The core of the difficulty is that generating the inviscid 
flow over the boundary layer amounts to finding a stream function Y that satisfies 
Laplace’s equation, with both Y and Yy prescribed at y = 0. Whether using 
periodicity or conventional inflow and outflow conditions, this problem is ill-posed 
for short waves, and its solutions diverge as y + co. Therefore truncation seems quite 
viable, and unless the truncation height is much lower than the height of the ceiling 
in the experiment, it is as justified as our approach with an infinite domain. 

The role of the extra term U, is to process the boundary layer in the fringe, so that 
it has the desired thickness when it re-enters the useful region. This is done by giving 
U2 a component v, < 0, towards the plate. We could have suction through the plate, 
but this causes numerical difficulties because of the non-zero w-component at the 
wall, where the grid is very fine. We also wish to disturb the wall layer as little as 
possible. It is therefore advantageous to forsake the continuity condition in the 
fringe, and to give U, a negative divergence. Accordingly, u, is 0 and v2 is given by 

V2(G Y) = --xY[1 -exp (-Y/Y,)l G ( 4 ,  ( 8 4  

G(z) = { exp ( - ~ ~ l z o l ’ ) + e x P (  - -[“-yA.]3}, 
where S, xl, and y1 are parameters. The peak value of Iv,l at the edge of the boundary 
layer (reached at  the periodic seam x = xo or xo + A%, where G = 1)  is typically 25 YO 
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of the free-stream velocity. The quantity X6xl/(U, A,)  (with 6 an average of the 
outflow and inflow thicknesses) needs to be about 0.013 in order to reverse the 
entrainment of non-turbulent fluid. A fair value for y1 is Um/[3  dU/dy] where both 
the edge velocity and the slope are taken at  the inflow, and the slope at  the wall. 
Usually x1 and y1 are chosen once and for all, and S is adjusted manually to obtain 
the desired inflow thickness. Low values of X will fail to sufficiently thin the 
boundary layer. Very high values may cause numerical problems (revealed by 
oscillations and spurious vorticity in the free-stream) as the method is unable to 
resolve an extremely thin boundary layer, not to mention quenching the turbulence. 
The x-dependence (8b)  consists of a halfGaussian a t  each end of the period. Since the 
Gaussian has fallen by more than two orders of magnitude when its argument reaches 
about 2.5, the useful region (defined as the region where v, is negligible) is roughly 

Having chosen U, and U,, and pending the definition of U,,(k), we solve for U,. 
It satisfies the divergence-free condition V. U, = 0 and homogeneous boundary 
conditions, Ul(z, 0, z )  = 0 and U, + 0 as y + co. The momentum equation is 

[x, + 2.5x1, x, + A ,  - 2 . 5 ~ ~ 1 .  

au,/at = (U,+ u,+ uz+ U,) 

x ( o , + o , + o 3 ) - V P + v V 2 ( U g + U 1 + U ~ ) - S G ( x ) g ( y )  U', (9) 

where S is a parameter currently equal to &S', g(y) = exp ( - [y/0.007lZ), and U' is the 
deviation of U from its spanwise ( x )  average. The need for this last term will be 
discussed shortly. P is the total-pressure field (P = p+$Iu2) .  It is periodic in x and 
z ,  and adjusts itself so that V. U, = 0 is satisfied. In the useful region G ( x )  is 
essentially zero, and (9) is the Navier-Stokes equation for U = U, + U, + U3. In 
earlier applications, U, was itself a (laminar) Navier-Stokes solution which simplified 
(9) (Spalart 1988b). However, adding U,+ U,+ U,, o,+w,, vV2(Uo+ U,), and the S' 
term to a NavierStokes solver written for U, is straightforward, using the explicit 
part of the time-integration scheme. 

In  the fringe, the Navier-Stokes equations are violated for two reasons: V -  U = 
V -  U, < 0,  which is essential to reduce the thickness; o, and vV2U, are omitted, 
which is not essential but has the numerical advantage that the right-hand side of (9) 
is very small for large y .  Note that we could write that the velocity field is 
U,, + U, + U,, and that a term U, x (0, + a, + 0,) is added in the fringe. This would 
also yield (9), but may seem more arbitrary than the interpretation of U, as a field 
with negative divergence designed to remove low-momentum turbulent fluid. The 
last term in ( 9 )  was added after it was found that the energy of the fluctuations was 
boosted in the fringe, presumably because of the compression by v2, resulting in an 
overshoot of the shear-stress profile at the inflow. With that term included the stress 
profiles are in better agreement with experiment at  x = 0.4, although still not 
monotonically decreasing (figure 11 a, below). In retrospect, a larger value of S', and 
some adjustment near the wall, would have been preferable. Prospective users should 
discard this term, unless there is a very clear need for it. 

3.3. Control of the pressure distribution 
The quantity U,, is computed by considering the slip velocity of the total velocity 
field U, + U, + U,. There is no need to consider U, in the useful region. Recall our 
definition of the slip velocity as the extrapolation to y = 0 of  the velocity in the 
irrotational region. The contribution of U, is U,,, because the exp ( - y / y , )  term of 
(7a) is zero in the irrotational region, and because ky, is small so that cosh (ky,) is 
very close to 1. 
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As for U,, it can be shown that in the irrotational region 

Q,(k y) = -W) exp (-Icy), 

where I ( k )  = Cjzl(k, y’) sinh (ky’) dy‘. 1: 
This comes from the Poisson equation (ayv - k2) B, = ikhZ1, the boundary conditions 
on U,, and the continuity condition. Now the extrapolation of (10) down t o  y = 0 is 
- - I (k ) .  This means that the field U,, even though it tends to zero both a t  the wall and 
far from it, contributes a slip velocity. The role of V,  is to offset it ,  and therefore we 
write 

03,(k)  = I@). 

When k = 0, (10) and (11)  are not valid. However, in that case Q, is zero in the 
irrotational region, so that its extrapolation to the wall is zero. Thus we can still 
apply ( 1 2 )  since I ( 0 )  = 0. 

The mission of U, is to offset fluctuations of the slip velocity on a large spatial 
scale, hut not to  suppress short-scale turbulent fluctuations. Accordingly, after I is 
computed from o1 it  is filtered before it is assigned to 03,. The spatial filter used is 
the Gaussian exp ( -0.03[k/k,]2),  where k,  = 27c/A, is the lowest wavenumber. The 
coefficient 0.03 is not critical. Once the flow has reached a statistically steady state, 
the filtered version of I is essentially time-independent. This is why aU3/at was 
omitted in (9 ) .  Note also that U, is smooth in x, and independent of z. 

3.4. Numerical resolution, initial conditions, and transient behavicncr 
The periodic domain in x is [0.3,1.1] (i.e. x, = 0.3 and A,  = 0.8) and x1 = 0.04, so that 
the useful region, or ‘comparison region’, is [0.4,1] (figure 1). Only the wavenumbers 
0 to 4 are retained in o,,,(k). The aim is for the simulation slip velocity to match the 
experimental one in the useful region, and smoothly return to the inflow value within 
the fringe. This is achieved through a least-squares fit to the experimental slip 
velocity, obtained from the Bernoulli equation, over the useful region. Points every 
0.05 in the region [0.4,1] are given equal weights in the least-squares equation. The 
point x = 1.05 is given a smaller but non-zero weight, even though it is outside the 
useful region, to help sustain the APG up to x = 1 .  The cosines have coefficients 
1.0827, -0.0815, -0.0059, -0.0029, and -0.0010; the sines have 0.0637, 0.0017, 
0.0057, and 0.0032. More waves would marginally improve the fit, but also generate 
larger velocities for large y because of the exponentials in (7). The I-terms are of 
magnitude 0.015 a t  most, fitting their description as small but not negligible 
corrections. 

The yo-scale in the exponential mapping is 0.012, yz is 0.0024, and the period in z 
is 0.09, or about three times the maximum boundary-layer thickness am=. This is 
comparable with values used earlier (Spalart 1988a). With zero pressure gradient the 
value AJcY z 3.75 was adequate, and here the mean straining transports turbulence 
upward so that the ratio of width to height, for the large coherent structures, is 
smaller. The two-point correlations suggest that the width of the large eddies at x = 
1 is about 0.02. To obtain the same resolution as in past studies (Spalart 1988a), 
measured in wall units based on the highest value of u, (near x = 0.53), the number 
of quadrature points in x, y, and z is 960 x 82 x 320 (the numbers of spectral modes 
in each direction is 8 the number of points). The fringe parameters (normalized by 
Uref and metres) are S = 10 and y1 = 0.00025. 

The simulation was started on a coarser grid (432 x 64 x 160), with U, = 0 and 
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finite-amplitude random body forces, active for only one time step and only near the 
wall. The goal is to ‘stir’ the fluid and introduce short length and time scales 
immediately, but without contaminating the free stream. The simulation proceeded 
on successively finer grids for a time of about 6, undergoing manual adjustments of 
the fringe parameters such as S ,  at which point it was ready for transfer to the fine 
grid and sampling. In  6 time units free-stream particles travel around the period (A,) 
about 8 times ; the boundary-layer structures and other information propagate more 
slowly, so that they may have gone around about 3 times, which is enough for a 
globally steady state to be established. The sampling time was 0.81 (normalized by 
[Iref and metres), or about 25 times cSm~JUrPf. 100 velocity fields, evenly spaced, were 
used and saved for future studies. The simulation time step was about 0.00024. The 
fine-grid run consumed about 300 hours on a Cray Y-MP, single processor. The 
sampling domain in z was of course A ,  = 0.09. A bell-shaped filter of width about 
0.02, in the x-direction, was applied t o  the statistics before plotting. The data before 
filtering were smooth enough to bear out all the conclusions of the study, but the 
filtering made them more suitable for presentation. 

3.5. InitiaE assessment of the fringe method as an  inJlow-outflow system 
Simulations of boundary layers with inflow-outflow conditions have been performed 
by Fasel (1976; also Konzelmann & Fasel 1991), Streett & Macaraeg (1989; also 
Danabasoglu, Biringen & Streett 1991), and Rai & Moin (1991). At the inflow, Fasel 
& Streett use straightforward Dirichlet boundary conditions, which are favourable 
for small-amplitude waves. Rai & Moin use Dirichlet conditions for the incoming 
characteristics (they have subsonic inflow) to input synthetic free-stream turbulence, 
which then ages before encountering the plate. At the outflow, Fasel uses a condition 
on the second derivatives, which works well only for small-amplitude single waves. 
It is unlikely that that condition can be extended to tolerate a turbulent outflow. 
Streett & Macaraeg use a ‘buffer domain’ in which the Navier-Stokes equations are 
altered, which is similar to the fringe method. In the initial paper the size of the 
buffer domain was equal to that of the useful domain, but Danabasoglu et al. now 
report a buffer domain equal to only 30 or 40% of the useful domain. We have yet 
to see fully turbulent results from Fasel’s or Streett & Macaraeg’s methods. 

Rai & Moin deal with the turbulent outflow by progressively coarsening the grid 
in the streamwise direction, and then applying a fairly crude condition on the 
pressure. Because it is applied far downstream and the x-dependence has been 
suppressed, this condition is successful in terms of avoiding reflections. This is a kind 
of a buffer domain; by our estimate i t  uses up only about 15% of their grid points. 
Unlike our Fourier method, the finite-difference methods provide flexibility of the 
grid spacing. The upwind bias in Rai & Moin’s finite-difference scheme probably 
helps prevent the propagation of the errors incurred in the region of grid coarsening. 

This review reveals a strong trend towards buffer or fringe approaches to the 
outflow problem. These approaches may be vaguer and less pleasing than 
combinations of derivatives, but the latter conditions, abruptly applied a t  the end of 
the domain, have simply not been very successful when applied to general 
disturbances and turbulence. 

The waste of grid points in the fringe region is not a serious concern, because the 
fringe method allows the use of Fourier series in x, which is very advantageous in 
terms of accuracy, storage, and numerical convenience (decoupling of modes in the 
linear terms). Such differences can easily bring about several-fold reductions in the 
computational effort required, so that a waste of even a quarter of the points in x is 
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very acceptable. In addition we show later that the turbulence at  the inflow is quite 
normal, and synthetic turbulent inflow conditions of comparable quality have yet to 
be obtained. 

The computer time per grid point and time step for the methods of Fasel’s group 
(U. Konzelmann and U. Rist, personal communication, 1991) and of Danabasoglu et 
al. (1991) ranges from about 3 to 12ps on Cray supercomputers. The present 
simulation, even though it suffers from the O ( q )  scaling (Spalart et al. 1991), needs 
4.1 ps for each substep of the RungeKutta scheme, on a recent Cray Y-MP. The 
accuracy advantage of the spectral method amounts to an advantage of at least a 
factor of 2 in each direction. For instance, in stability work we use about 10 points 
per wavelength even with rapid amplification (without amplification, 3 points per 
wave are sufficient). Danabasoglu et al. (1991) and Konzelmann & Fasel (1991) use 
between 32 and 40 points per wavelength in their fourth-order-accurate methods. 
Konzelmann & Fasel use 105 points in the y-direction, again with fourth-order 
accuracy, whereas spectral methods need only 25 to 40 points for accurate stability 
results (Spalart et al. 1991 ; Danabasoglu et at?. 1991). Some methods also demand 
surprisingly large numbers of time steps, such as 750 to several thousand per period 
(Konzelmann & Fasel 1991 ; Danabasoglu et al. 1991). This cannot be required for 
accuracy. These stability difficulties are related to the spatial discretization and the 
rather large number of points (compounded by the wall suction and the Chebyshev 
discretization in the case of Danabasoglu et aZ.), and also the use of the 
Adams-Bashforth scheme at  too high a Reynolds number. 

The important issue is whether the flow in the useful region is disturbed by the 
violation of the equations in the fringe. The essential arguments are that the vortical 
region (the boundary layer) is thin compared with the streamwise distances, and the 
presence of the wall. Let us expand. We have seen in $3.3 that the long-range 
variations of the free-stream flow (specifically, the slip velocity) are controlled. 
Therefore, provided that vorticity does not escape the wall region (which we verify) 
the evolution of the unknown field U, under (9) amounts only to displacing vorticity 
within a shallow region of thickness 6. If we reason in terms of velocity induced by 
vorticity we find that this vorticity and its image vorticity (because of the wall) form 
a dipole so that the velocity they induce at a distance Ax upstream or downstream, 
within a distance S of the wall, decays like for the u-component, and  AX)^ 
for the v-component. This shows that a change in the vorticity field within the 
boundary layer, with the free-stream velocity held fixed, is not felt farther away than 
a few boundary-layer thicknesses. Thus, at the interface, vorticity flows into the 
useful region closer to the wall thanks to the fringe terms, but the exact mechanism 
that effected the thickness reduction (here, the V, x (a,, + o, + as) term, but it could 
have been wall suction) is not important. In  fact the removal of boundary-layer fluid 
by suction is used in many experiments, and the boundary layer is not considered to 
be durably suspect downstream of the slot, let alone upstream of it. 

Another benefit of boundary-layer physics is that, although the direct effect of v2 
is to blindly reduce the size of the layer in the y-direction, turbulent structures are 
constantly destroyed and regenerated so that the lengthscales in II: and 2, and the 
timescales, adapt to the imposed y-scale. This effect is probably largely responsible 
for the fair quality of the turbulence at the inflow (see figures 9-14). Note also that 
v 2  (having a double zero at  the wall) is very small in the wall region of the boundary 
layer; for instance at y+ = 25, v: M -0.09 compared with U+ M 12 and v’+ M 0.8. 

Let us examine two other possible candidates for a fringe treatment. We could 
attempt to simulate decaying grid turbulence, with periodicity in y and x ,  and it 
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would be an easy matter to enhance the turbulent energy in the fringe. However, the 
lengthscales also increase during the decay and the large-scale motion would need to 
be suppressed, so that it does not outgrow the periods in y and z. There would be little 
benefit from ‘recycling’ the turbulence. A mixing layer would be a somewhat better 
proposition since we could reduce the thickness with a v,-field as in the boundary 
layer, but the larger timescales introduced by pairing could hardly be eliminated, 
resulting in a spurious feedback mechanism. There is not as rapid a turbulence 
regeneration as in the boundary layer, nor is there a wall to suppress long-distance 
interactions in x. We do not recommend the fringe method except for boundary 
layers and similar flows (channel, pipe). 

In addition to the physical issues addressed so far there is a numerical issue. Large 
numerical errors in the fringe would easily contaminate the useful region, especially 
with a spectral method. Therefore we must ensure that the fluctuations in the fringe 
do not become either much more intense or much more difficult to resolve (because 
of steep gradients) than those in the useful region. Such a phenomenon would be 
fairly easy to detect, however. 

A disadvantage, relative to the multiple-scale method (Spalart 1988a), is the loss 
of statistical sample and of spectra in x. This makes it more difficult to obtain smooth 
statistics. In addition, although the programming of (7)-( 12) and the extraction of 
simple statistics up to Reynolds stresses is straightforward, the extraction of the 
Reynolds-stress budgets, for instance, is not. Another unpleasant feature is the large 
number of arbitrary functions and fringe parameters that had to be introduced. A 
few of these are being improved, simplified, or eliminated. This work being the first 
inflow/outflow simulation with the fringe method, we had to also report the more 
awkward aspects of the approach, such as the S’ term. The major obstacle to the 
optimization of the method is the small number of simulations that are being 
conducted: only four to date. 

In summary it is very plausible based on the arguments just presented and on 
practical evidence that for a boundary layer the fringe method indeed allows a 
solution of the Navier-Stokes equations in the useful region without significant 
spurious interactions across the fringe. In addition the ‘recycling’ of the turbulence 
across the fringe yields inflow turbulence of rather high quality. Compared with the 
multiple-scale method the new method has the major advantage that the equations 
are ‘pure’ in the useful region, and that steep pressure gradients can be treated. 
Compared with conventional inflow-outflow procedures, it is very likely that the 
fringe method requires a shorter entry length for the turbulence to be well-developed. 
In  addition, the outflow condition has never caused any loss of numerical stability. 
Finally, note that all turbulent outflow approximations rely on equations that are at 
best plausible, and have little to do with the Navier-Stokes equations. 

4. Results 
4.1. Global quantities 

The wall-pressure coefficient of the experiment (EXP) and of the simulation are 
compared in figure 2 over the full periodic domain of the DNS [0.3,1.1] to illustrate 
the fringes. The declared ‘comparison region’ is [0.4,1]. The agreement within it is 
very good since the difference is a t  most 0.01. Had the interaction term I(k) been 
omitted, the C ,  would have shown errors of up to 0.05 near z = 1. We reiterate that, 
unlike in a Reynolds-averaged boundary-layer calculation, the agreement shown in 
figure 2 is not trivial. The difficulty was to obtain a specified distribution of the mean 
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FIGURE 2. Mean wall-pressure coefficient, based on U,,,. 0 ,  EXP; -, DNS. 

pressure without holding any instantaneous quantity. The results vindicate the route 
taken with the slip velocity, and the interaction through I(k). 

The pressure within the flow was extracted from the simulation. The largest 
differences relative to the wall pressure were found near x = 0.6. As expected from 
the concave curvature of the streamlines, the static pressure at the edge of the 
boundary layer was lower than the wall pressure, by about 0.01 in C,. This is a 
concern in the experiment ($2.4). The effect on Pitot-tube measurements of velocity 
was computed from the simulation, i.e. we compared U and [Ua + 2(p --p,)/p]f. Even 
at  x = 0.6 the errors were negligible within the boundary layer, and reached only a 
few percent far outside the boundary layer (y x 36). 

The displacement and momentum thicknesses are considered next. To compute 
them with the classical definitions (integrals of the velocity) we need a value y = 6 
at which to truncate the integrals, and to give the edge velocity. This value is much 
more critical here than in boundary-layer calculations because, as mentioned before, 
U(y) does not tend to a constant as y+ 00. Outside the vortical region it shows a 
curvature, which may be of either sign, so that definitions such as the location at  
which U is 99.5% of free stream may fail completely. This is due to  the pressure 
gradient, and is admittedly exacerbated near the right fringe because of the rapid 
turnaround of the C, (see figure 10d below). 

Two remedies were applied. The first was to prescribe a function S(x) ,  adjusted 
manually to be between 20 and 30 % above the edge of the turbulent region, meaning 
the region with significant vorticity and Reynolds shear stress. The value of S will be 
indicated on later plots, allowing the reader to judge the quality of the fit. The 
formula is 

6 = 0.015+0.023~~.  (13) 
The second remedy was to base the definitions of the thicknesses on the vorticity. 
Within the boundary-layer approximation (0, % - ul/) and using integrations by 
parts the edge velocity U ,  and the thicknesses can be written 



A turbulent boundary layer with pressure gradients 357 

0.4 0.5 0.6 0.7 0.8 0.9 1 .o 

FIGURE 3. Momentum and displacement thicknesses. Lower curves, 8 ;  upper curves, a*. 0 ,  
EXP; -, DNS, velocity integrals truncated a t  6 (13); ---, DNS, vorticity integrals (14). 
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FIGURE 4. Shape factor. Symbols as in figure 3. 

These definitions illustrate the interpretation of 6" as the centroid of vorticity, and 
they are well-behaved in pressure-gradient flows, because unlike aU/ay the vorticity 
decays fast enough as y+ co for the integrals to converge. Unfortunately, we have 
been unable to extend these definitions to compressible flow. We were also unable to 
obtain the vorticity accurately enough from the experiment, even by computing v 
from the continuity equation and then differentiating it in x. On the other hand, the 
vorticity integrals converged well for the DNS. Figure 3 shows that thicknesses 
obtained from the classical definitions and from (14) agree well. The vorticity 
thicknesses are a little noisier, but they are better behaved near the right fringe. 

The thicknesses are shown in figure 3 and the shape factor in figure 4, and the 
agreement with experiment is fair. The thicknesses were successfully matched at the 
inflow, z = 0.4, but the DNS values for S* and H soon drop below the EXP values. 
The DNS value for H at ~t: = 0.5 is about 1.43. This is consistent with the vaIue in a 
sink flow with K = 1.25 x which is between 1.38 and 1.43. The EXP values are 
around 1.47. Subsequently the two data sets seem not to resolve the difference, with 
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FIGURE 5. Shear-stress coefficients, based on U,. __ , DNS wall stress; ---, DNS peak stress 
(versus 9); 0 ,  EXP wall stress; 0, EXP peak stress. 

the shape-factor difference even compounding a little in the APG. The velocity 
profiles presented later (figure 9) show that the thicknesses tend to emphasize 
differences that are detectable, but rather subtle. 

The skin-friction coefficient C, based on U,  is shown in figure 5 ,  and the quality 
of the agreement is about the same. Here the velocity U,  was computed from the 
wall pressure using Bernoulli's equation (U,  = U,,,( 1 - C,);) ; therefore, in view of 
figure 1, the comparison is not biased by sizeable differences in U,. In figure 9 below 
it is shown that, had the measured value of U at the edge of the boundary layer been 
used instead, the EXP result for C, would be slightly lower, by up to 4 %. This would 
benefit the agreement between 0.55 and 0.7, and degrade it beyond 0.7.  The DNS 
value is definitely too low at x = 0.4. The wall region lost energy, possibly due to the 
s' term which was aimed a t  the upper region. The skin friction recovers by 2 = 0.55. 
After this we observe disagreements of up to 3.5 x which is 12 YO at x = 1. The 
disagreement is fully correlated with the pressure gradient and will be discussed 
further. 

The peak value of the total shear stress across the boundary layer, T , , ~ ,  is also 
shown in figure 5. In  an FPG the peak is reached at the wall, so that C,,,, = C,. In 
the experiment the skin friction and the shear stress in the field are obtained by 
different means, which explains why the two curves do not smoothly diverge when 
the APG is applied. This is discussed further below. Note that the ratio C,,,,/Cf 
reaches about 1.7 ; the value 1.5 is sometimes quoted as the minimum needed for the 
flow behaviour to be typical of an APG (Schofield 1981). 

Figure 6 shows the momentum balance - within the boundary-layer approxi- 
mation - for both datasets, PL = (1  -C,) 8-s&3*dCp and PR = SfC,dx versus x (Cf 
based on U,,, here, and vorticity thicknesses for the DNS). The PL curves were 
translated to yield the same average over [0.4,1] as the corresponding PR curves 
(each curve involves an arbitrary additive constant, because the origin of the 
integrals is arbitrary). The experimental and simulation curves are shifted with 
respect to each other for clarity. The balance is satisfactory in both cases, although 
noisier in the DNS. 

Note that lack of balance has different causes in the two approaches. In 
experiments, it usually comes from imperfect two-dimensionality of the mean flow, 
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FIGURE 6. Momentum balance. -, DNS PL; ---, DNS PR; ---, EXP P,; . . . , EXP p,. 
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FIGURE 7. DNS momentum balance, a t z  = 1. 0, -UU, ; 0, - Vu, ; A, -p, ; 0,  v( u,, + u,,) ; 

+, -a,ufz; x ,  -3ay~rv ' ;  ---, sum. 

or inaccurate measurements, particularly of C,. In  the simulation, lack of balance can 
come from a failure to reach a steady state, and/or insufficient length of the time 
sample. The effects of normal Reynolds stresses have been shown to be smaller than 
the differences we are observing here (Samuel & Joubert 1974). The uncertainty in 
the thicknesses is far from negligible. The DNS balance would be noticeably worse 
in the [0.8,1] region if the velocity thicknesses were used. 

The momentum-balance question is investigated in figure 7 with a representative 
detailed momentum balance from the DNS. The normal-stress term -a,p is indeed 
small. The sum of all terms is consistently much smaller than the dominant terms, 
showing that the flow has in fact reached steady state. We do not observe any trend 
such as an extended imbalance that would indicate that the flow has a sizeable M*/at 
(this quantity is the integral of the sum of the terms in figure 7) .  We do observe that 
the pressure gradient term -p,  is not constant across the layer. Thus, at  this value 
of x the boundary-layer approximations are not satisfied accurately enough for the 
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FIGURE 8. Value of U+ a t  y+ = 50. 0 ,  E X P ;  -, DNS; 0, Nagano et al., at 
pressure gradient ; ---, mixing-length formula, Van-Driest damping ; .~ 
formula, modified Van-Driest damping ; ---, Mellor-Herring formula ; . . 
formula. 
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FIGURE 8. Value of U+ a t  y+ = 50. 0 ,  E X P ;  -, DNS; 0, Nagano et al., at 
pressure gradient ; ---, mixing-length formula, Van-Driest damping ; .~ 
formula, modified Van-Driest damping ; ---, Mellor-Herring formula ; . . 
formula. 

roughly the same 
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. , Johnson-King 

PL-PR plot (which uses the pressure gradient a t  the wall) to truly reflect the 
momentum balance. This waviness in the pressure in the upper part of the layer is 
found only close to the right fringe. 

4.2. Skin-friction measurement and logarithmic layer 

The 12% disagreement in skin friction a t  x = 1 is of concern. In  the zero-pressure- 
gradient flow, the largest disagreement between DNS results and the average of 
experiments collected by Coles (1962) was about 5% (Spalart 1988a). In a 
simulation, there is no difficulty in computing the C,. It is as reliable as the 
simulation as a whole. Grid-refinement tests conducted in the past (Spalart 1988a) 
indicate that the resolution used here, in wall units, is adequate in the FPG region 
and more than adequate in the APG region since the friction velocity has dropped 
by over 30% (in addition, from past experience we would expect numerical under- 
resolution to produce excessive skin friction in the FPG region, where u, is largest). 
This assumes that the wall region is no more difficult to resolve here than with zero 
pressure gradient. Admittedly the dissipation is higher in wall units, making the 
Kolmogorov scale smaller, but since only the power f of the dissipation enters the 
lengthscale this effect is weaker than the drop of u,. 

In  the experiment a Preston tube is used to measure the skin friction ; this is an 
indirect method that relies on the law of the wall. We explore this issue in figure 8 
by plotting the value of U+ a t  y+ = 50, using the declared values of C, in each dataset. 
The EXP points vary up, then down, but they are all between 14.4 and 14.8. In 
contrast the DNS results decrease steadily from about 15.4 at x = 0.55 (where we 
believe the inner layer is well developed) to about 14 at  x = I. Now, the recent 
literature contains values from 0.40 to 0.41 for K ,  and from 5 to 5.2 for C, leading to 
a much narrower range for U+ a t  y+ = 50: 14.54 to 14.98. Nagano et al.’s results, a t  
roughly the same value of p+ and p and a comparable Reynolds number, agree fairly 
well with the DNS results. The shift they observed is about 30 YO smaller. Note that 
they deduced the skin friction from single-wire measurements in the region 1.1 < 
y+ < 5, with a very substantial correction for near-wall effects. The correction was 
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calibrated with zero pressure gradient (obtaining the skin friction by Clauser's 
method), within the same experimental set-up. 

The shift up slightly beyond 15 in the FPG is consistent with experimental and 
DNS results in sink flows (Jones & Launder 1972; Spalart 1986) and channel flows 
(Antonia et al. 1992). However, in those flows, the Reynolds number and the pressure 
gradient are not independent. The present DNS results, which independently 
support Nagano et al.'s results, strongly suggest that the shift is a pressure-gradient 
effect. If so, it illustrates again the irrelevance of near-wall Taylor expansions 
anywhere outside the viscous sublayer : the second-order Taylor expansion U+ = 

y+ + &+yf2 + O(y3) (recall that p+ = vp,/u,") shows that close enough to the wall the 
U+ profile is higher in an APG (see also figure 10 below). The cross-over point is near 
y+ = 8. 

Early DNS results with pressure gradients (Spalart & Leonard 1986) also showed 
a shift of the U+ profile. It was of the same magnitude as the present one, and also 
became noticeable near y+ = 10, except for a very strong APG (p+ 2 0.15). These 
results led to the same conclusions as here, but we placed less confidence on them, 
because of the multiple-scale approximation. At the time the method used the law 
of the wall as an assumption, and then mildly disproved it,  leaving a confused 
picture. This weakness has been eliminated. 

The shift down in the APG region is in agreement with some results of Hirt & 
Thomann (1986). However, they were considering sudden application and removal of 
pressure gradients, and they report errors of either sign in an APG. The current flow 
is gradual (p+ ranges from -0.008 to +0.02) and thus only a subset of the range of 
situations they were exploring. Frei & Thomann reported a shift down by up to 1.5 
units of U+, but also a shift up after the APG is also completely removed. Both 
studies used an elaborate balance for direct skin-friction measurement, but showed 
considerable caution in trusting its predictions. Hirt & Thomann disproved an 
empirical formula due to Frei & Thomann, but only by using steep pressure 
gradients. However, the formula predicts a shift up for the velocity profile in an 
APG, and therefore disagrees with the DNS and Nagano et al.'s results. 

Let us add the present DNS results to the body of evidence for a moderate failure 
of the law of the wall in pressure gradients. This body is still small and far from sorted 
out. We cannot draw conclusions valid in the large-Reynolds-number limit. For 
instance, the apparent log layer is much too short to give hope of separating the 
effect of K and C ;  this is why we sought a substantial quantity, namely U+(50) ,  for 
figure 8. I n  addition, a t  y+ = 50 the total shear stress already departs from its first- 
order Taylor expansion 7+ = 1 +p+y+ very strongly (in figure l l d ,  y+ = 50 
corresponds to y = 0.0032), indicating that a correction (such as the 'modified 
damping ', below) based solely on p+ should certainly not be generalized from the 
present dataset. Much higher Reynolds numbers are needed, as are larger values of 

Nevertheless, a survey of the more widespread turbulence models gives food for 
thought. Figure 8 shows the value a t  y+ = 50 of the velocity profiles that each model 
would associate with the total shear stress 7 extracted from the DNS. For instance, 
for the mixing-length model with Van-Driest damping we calculated 

P+ . 

The results are shown in figure 8 for the mixing-length model with Van-Driest 
damping, and with a modified damping; the Mellor-Herring model (Coles & Hirst 
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1968) ; and the Johnson-King model, for which we used the 1985 version except that 
A+ was taken as 17 as in later versions. The 'modified damping' loosely follows the 
type of formulae reviewed by Cebeci & Smith (1974), but includes only a first-order 
effect ofp+. It consists of substituting 26/( 1 + ap+) for 26 in (15), where a is a constant 
discussed below. 

The curves all agree well near x = 0.63, where the pressure has its minimum, 
although the outer region is not indicative of an established zero-pressure-gradient 
flow (see figure l l b ) .  As already noted by McDonald (1968), except with modified 
damping, the older models predict a shift over the log law in APG, in sharp contrast 
with the DNS and Nagano et al.'s results. In fact the shift from x = 0.5 to 2 = 1 is 
more than the opposite of that shown by the DNS. It is strongest for the 
Mellor-Herring model. The Johnson-King model reverses its trend as the pressure 
gradient switches sign, making it quite accurate in the APG. It benefits from the use 
of the outer-layer velocity scale &,, in the inner-layer model, but forfeits the hope 
of an understanding in terms of near-wall quantities alone. The Johnson-Coakley 
model (1990) was devised specifically to obtain law-of-the-wall behaviour instead of 
mixing-length behaviour in APG, citing Galbraith & Head (1975). It gives a smaller 
eddy viscosity than Johnson-King, which puts its results a little farther from the 
DNS results. The CL constant in the modified damping can be tuned to produce about 
the same shift as in the DNS results. The best value is about 45 ; Nagano et al. give 
30.18, again about one-third smaller. Since p+ takes values near 0.02, this correction 
is already very substantial and nonlinear in p+, that is, 1/ (  1 + ap+) and ( 1  - ap+) are 
quite different. We made no attempt to optimize the nonlinear trend, except for 
noting that the (1 -ap+) form breaks down completely for stronger gradients. In 
summary, we seem to confirm a qualitative deficiency of the widespread (unmodified) 
algebraic inner-layer turbulence models. However, it would be premature t o  make 
constructive suggestions, because of the lack of enough cases. Also, the importance 
in practice of this deficiency should not be inflated, because in strong adverse 
gradients the outer-layer model dominates. 

The shift of the U+ profile is of great interest for indirect methods of skin-friction 
measurement such as the Preston tube and the Clauser chart. Consider a hypothetical 
method that strictly consists of assuming that U+ takes its standard value and slope 
at y+ = 50, whereas in fact it  is shifted by AU+, the symbol A denoting a small error. 
Assume the dimensional velocity near y+ = 50 is measured exactly. The result is 

A U+ 2- - Au 
u, U + + l / K '  

At x = 1 the DNS gives AU+ M - 1, so the relative error in measuring the friction 
velocity is AuJu, M -0.06. Thus, the indirect method would underpredict the skin 
friction by 12 %. While the Preston-tube system is not as simple as our hypothetical 
indirect method, it appears that this effect can account for about half of the 12% 
skin-friction disagreement between experiment and simulation (at x = 1, AU+ 
between EXP and DNS is about -0.5). The other half arises from genuine 
differences in the measurements, for instance near y = 0.002 in figure 9(d). 

4.3. Local results 
We show results at four stations: x = 0.4 gives inflow values for possible other 
investigators, and 0.6,0.8, and 1 allow meaningful comparisons. The velocity profiles 
in figure 9 illustrate the shape-factor disagreement. The EXP values of U near the 



A turbulent boundary layer with pressure gradients 363 

0 0.005 0.010 0.015 

1.2 ( d )  1 

0 0.01 0.02 0.03 

Y 

1.0- ________..______.._ 

0.2 , . . . , . , . . , . . 1  . , . . . . , . . . . , . . . . , . . , . , . . . . , 
0 0.01 0.02 0.03 0.04 

Y 
FIGURE 9. Velocity profiles, normalized by U,,,. ~ , DNS; ---, EXP. (a) x = 0.4; ( b )  z = 0.6; 

( c )  z = 0.8; ( d )  z = 1. 0 ,  y = 8 (13), U = Urn, from the Bernoulli equation. 
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FIGURE 10. Velocity profiles, in wall units. - 
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-, UNS; ---, EXY; . . ., log law ( K  = 0.41, - _ _  - 
C = 5.2) and U+ = y+ Taylor expansion; --- , U' = y + + w y f 2  Taylor expansion. (a) x = 0.4; 
(b)  x = 0.6; (c) x = 0.8; ( d )  z = 1. a, locates S (13). 

edge of the layer are slightly higher, and farther from matching the value deduced 
from the Bernoulli equation. Figure 10 expands on figure 8 for the U+ shift and 
displays the increased wake component in the APG. It also illustrates the rapid 
variations of U starting around y = 0.07 (y' z 1300, for x = l ) ,  preceded by the drift 
discussed above in the context of the definition of the boundary-layer thicknesses. 



364 P. R. Spalart and J .  H .  Watrnufl 

0 0.005 0.010 0.015 0 0.005 0.010 0.015 0.020 

0 0.005 0,010 0.015 0.020 0.025 0.030 0 0.01 0.02 0.03 0.04 

Y Y 
FIGURE 11. Reynolds and total shear-stress profiles. -, DNS ; ---, EXP ; . . . , 7  = 7, + y dp,/dx 
Taylor expansion for DNS; ---, Taylor expansion for EXP. (a) II: = 0.4; (b )  x = 0.6; (c) x = 0.8; 
( d )  x = 1. 

Next we show the shear stress, in figure 11. The anomalous stress for the DNS a t  
x = 0.4 was mentioned earlier (53.2). The subsequent recovery is assisted by the FPG 
and is a credit to the design of the flow (Watmuff & Westphal 1989). Farther down, 
the DNS result is consistently higher than the EXP result. The peak values were 
shown in figure 5. The linear Taylor expansion of the total stress near the wall follows 
the DNS curve, consistent with the momentum balance in figure 7 .  Conversely, it 
brings out the near-wall difficulties of the experiment. There, we took the Preston- 
tube value of the skin friction. The Taylor expansion and the measured values do not 
connect well. This suggests that  the viscous shear stress is unreliable near the wall, 
which was not unexpected, but also that the Reynolds-stress measurements in the 
upper layer are underestimates. This could be due to the out-of-plane velocity 
component, as discussed in $2.5.2. However, we can loosely infer from the behaviour 
of the mean flow (lower H )  that the DNS had a slightly higher shear stress than 
the EXP. Thus the true experimental shear stress may be between the curves of 
figure 11. 

The root-mean-square profiles in figure 12 give about the same impression. The 
agreement is best for u’, which is usually measured more accurately because it relies 
on a normal hot wire instead of an X-wire. The spatial averaging by the hot wires 
(length up to 13 wall units) may also play a role. The DNS v’ and w’ are definitely 
larger than the EXP ones by 2 = 1. Both datasets satisfy the Corrsin-Kistler 
relationships (Stewart 1956), UI’UI M 0, d 2  x d2 +d2, fairly well outside the boundary 
layer. These relationships would be exact in the absence of streamwise inhomo- 
geneity (and assuming zero vorticity), and serve as an approximate check. 

The structure parameter in figure 13, a1 = - u’u’/(u’~ f w’’ + wf2) (Bradshaw, 

- - -  

- _ _ _  
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FIQURE 14. Root-mean-square profiles, in wall units, from DNS. -, u‘+ (upper curves), w‘+ 
(middle curves), and w’+ (lower curves); ---, k t f .  (a)  z = 0.4; ( b )  x = 0.6; ( c )  z = 0.8; ( d )  z = 1. 

Ferriss & Atwell 1967), shows extensive history effects in the DNS up to x = 0.6. 
Starting at  x z 0.7 the two results agree well and show a consistent dip in the upper 
region. By x = 1 the value in the upper region is roughly 0.11 compared with the 
‘standard’ 0.16. The largest values observed, near y/6 = 0.3, are actually below 0.15. 
The EXP/DNS agreement is also a little misleading in that the numerators and 
denominators both disagree by up to 15 %, in the same direction. The turn up of the 
EXP results near the edge of the layer is a little disappointing, in that the 
Corrsin-Kistler relationships require a, to drop to 0 outside the vortical region. 
Nonetheless, we consider the lowered values in the APG as established. The 
correlation coefficient R,, has essentially the same behaviour. This conflicts with the 
results of Arnal, Cousteix & MicheI (1976), for instance, even though they covered a 
wider range of APG (H up to 1.75). 

4.4. Inner-layer scaling laws 
Given complete near-wall fields from the DNS we can scrutinize the universality of 
that region, in addition to the test of U+ shown above. Figure 14 details the 
behaviour of the root-mean-square intensities near the wall. From x = 0.55 to 1 the 
peak value of the streamwise intensity, uZax, rises by about 0.2 both in EXP and 
DNS. In contrast the other components rapidly rise, in wall units, in the APG. The 
w’ component is particularly sensitive, as found by Nagano et al. (1991) for a pressure 
gradient and by Spalart (1988a) for the Reynolds number. As a result the peak value 
of the turbulent energy, kk,,, rises from about 4.2 to 6.2; see figure 15. In  the past, 
it has been suggested that kkaX takes the universal value of 4. The peak is reached 
near the wall, with y+ less than 15, for x < 0.95; for larger x an upper peak develops 
(figure 14d). Even more striking is the behaviour of the wall dissipation E:, which 
more than doubles as shown in figure 16. Nagano et al. showed a similar effect on the 
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FIGURE 16. Wall dissipation in wall units, e i .  ~ , DNS. 

near-wall streamwise fluctuations. At y+ = 1 they obtain u‘+ M 0.323 +5.3p+. At x = 
0.6, 0.8, and 1 the values of p+ are about 0, 0.013, and 0.015 respectively, so the 
formula gives 0.323, 0.39, and 0.40. The DNS yields 0.42, 0.50, and 0.51. Our values 
are higher, but the slope with respect to pi is about 6.1, which is not out of line with 
their 5.3. 

Previous DNS results (Spalart 1988 a )  had shown lack of near-wall universality, 
due to the Reynolds number, but nothing of this magnitude. It does not come as a 
surprise that the pressure gradient would have a stronger effect than the Reynolds 
number, especially if the Reynolds number merely quadruples. Nevertheless, such a 
strong lack of universality is a major obstacle to theories and turbulence models. 

5. Conclusions and future work 
The outright comparison of experimental and direct-simulation results, conducted 

at the same Reynolds number and for a non-trivial turbulent boundary layer, is 
possible. The joint study provides an overall confidence in the results, an immediate 
estimate of the remaining uncertainty, and a picture so complete the readers can 
form their opinion about where the ‘true ’ results lie. 

The results are ready for use in the scrutiny of turbulence models, with a 
qualification. The Reynolds numbers (R, < 1600) are well within the range that is 
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documented in zero pressure gradient as producing ‘ low-Reynolds-number effects ’ 
(Coles 1962). Consequently the straightforward testing and calibration of a model 
may not be the most judicious exercise. It may be that qualitative information is all 
that can be generalized with confidence to ‘normal’ Reynolds numbers. 

Several qualitative facts do stand out. The first is that, according to the 
simulation, the U+ profile in the buffer and lower log layer shifts up in a favourable 
pressure gradient, and down in adverse gradient. The experiment shows a much 
weaker trend in the same direction. The uncertainty in the measurement of the wall 
distance, which we estimate is close to 1 wall unit in this and in comparable 
experiments, remains a major obstacle to direct skin-friction measurements. 

Sketchy theoretical arguments to the effect that  the local total shear stress 
(instead of the wall shear stress) should enter the law of the wall, roughly equivalent 
to the mixing-length theory, make the profile shift in the direction opposite to what 
the DNS shows. I n  fact, the absence of a shift would have been even more remarkable 
than the observed shift is, because it would have suggested a simple situation 
‘waiting for an explanation’ (see Galbraith & Head 1975). The shift is in fair 
agreement with the experimental results of Nagano et al. (1991). Their Reynolds 
number was not higher than ours. For once, the experimental incentive is also to 
lower the Reynolds number so as to thicken the viscous sublayer. Unfortunately, this 
means we have no way of distinguishing a buffer-layer effect from one that persists 
in the log layer. Nagano et al. concluded in favour of a buffer-layer effect, accounted 
for by the p+ term in the modified Van-Driest damping, while the K&rman constant 
was unchanged. I n  our opinion, the log layers are too short and noisy for that 
question to be answered, if indeed there is a simple answer. 

The somewhat unexpected behaviour of the Uf profile is accompanied by other 
deviations from universal near-wall behaviour. The behaviour of the wall dissipation, 
for instance, is spectacular. Again its trend is in agreement with Nagano et al.’s 
results. Here the DNS evidence, as it did for the Reynolds-number effects (Spalart 
1988a), opposes most theories as well as the application of wall functions in 
turbulence models, particularly for higher moments. It is in agreement with the 
inactive-motion ideas (Bradshaw 1967 b ) ,  but these remain primarily qualitative. An 
uncontested quantitative model of turbulence in pressure gradients is far out of 
reach. 

Another trend that may be a disappointment is the dip in the a, structure 
parameter in the upper part of the boundary layer in adverse pressure gradient. This 
does not instantly invalidate the turbulence model that relies on the universality of 
this ratio away from the wall (Bradshaw et al. 1967), because good models are rarely 
free of compensating errors. One should refrain from too literal an interpretation of 
the variables in models. Nevertheless, a dip across the whole width of the layer has 
often been attributed to three-dimensional effects. Here we observe a dip in a two- 
dimensional flow, but it is only in the upper part of the layer. 

The original goal of improving on the results of Spalart & Leonard (1986) in 
adverse gradients has been achieved. The deviation of the velocity profile, compared 
with the experiment, is much smaller although still in the same direction. The DNS 
profile is slightly fuller. The cause of the earlier problems may remain a matter of 
conjecture, but the conjecture is of less importance now that the fringe method has 
superseded the multiple-scale method. 

Future work will include a complete publication of the experimental results in the 
downstream region, where p is close to  constant. The extension of the simulation to 
higher Reynolds numbers is not practical on current computers. We may conduct 
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further analysis of the flow fields and attempt to extract the Reynolds-stress 
budgets. It is not clear whether a sample long enough for that purpose can be 
generated. 

The authors thank Dr R. Westphal for his role in the design of the flow. Drs G. 
Coleman and P. Johnson reviewed parts of the manuscript. The referees were 
remarkably perceptive. Some of the calculations were performed on the NAS 
computers. The second author was supported by the NASAIStanford Center for 
Turbulence Research. Most of the funding for the experimental apparatus was 
supplied by the Fluid Mechanics Laboratory a t  NASA Ames Research Center. 

REFERENCES 

ANTONIA, R. A., TEITEL, M., KIM, J .  & BROWNE, L. W. B. 1992 Low-Reynolds-number effects in 
a fully developed turbulent channel flow. J .  Fluid Mech. 236, 579-605. 

ARNAL, D., COUSTEIX, J .  & MICHEL, R. 1976 Couche limite se dkveloppant avec gradient de 
pression positif dam un Bcoulement turbulent. La Rech. Abosp .  1976-1, 13-26. 

RRADSHAW, P. 1965 The effect of wind tunnel screens on nominally two-dimensional boundary 
layers. J .  Fluid Mech. 22, 67S-688. 

BRADSHAW, P. 1967a The turbulence structure of equilibrium boundary layers. J .  Fluid Mech. 29, 

BRADSHAW, P. 1967 b ‘Inactive ’ motion and pressure fluctuations in turbulent boundary layers. 

BRADSHAW, P., FERRISS, D. H. & ATWELL, N. P. 1967 Calculation of boundary-layer development 

CEBECI, T. & SMITH, A. M. 0. 1974 Analysis of Turbulent Boundary Layers. Academic, 
CLAUSER, F. 1954 Turbulent boundary layers in adverse pressure gradients. J .  Aero Sci. 21, 

COLEMAN, G. N. & SPALART, P. R. 1993 Direct numerical simulation of a small separation bubble. 
In  Proc. Intl Conf. on Near-Wall Turbulent Flows, Arizona State U.,  &,?arch 15-17, 1993. 

COLES, D. E. 1956 The law of the wake in the turbulent boundary layer. J .  FluidMech. 1,191-226. 
COLES, D. E. 1957 Remarks on the equilibrium turbulent boundary layers. J .  Aero. Sci. 24, 

495-506. 
COLES, D. E. 1962 The turbulent boundary layer in a compressible fluid. Appendix A: A manual 

of experimental practice for low-speed flow. Rand. Rep., pp. 35-74. 
COLES, D. E. & HIRST, E. A. 1968 Proc. AFOSB-IFP-Stanford Conf. on Computation of Turbulent 

Boundary Layers, Stanford, Aug. 18-25, 1968, Vol. 2. 
DANABASOGLU, G., BIRINGEN, S. & STREETT, C. L. 1991 Spatial simulation of instability control 

by periodic suction blowing. Phys. Fluids A 3, 2138-2147. 
DENCEL, P. & FERNHOLZ, H. H. 1990 An experimental investigation of an incompressible 

turbulent boundary layer in the vicinity of separation. J .  Fluid Mech. 212, 61k636. 
FASEL, H. F. 1976 Investigation of the stability of boundary layers by a finite-difference model of 

the Navier-Stokes equations. J .  Fluid Mech. 78, 355-383. 
FREI, D. & THOMANN, H. 1980 Direct measurements of skin friction in a turbulent boundary layer 

with a strong adverse pressure gradient. J .  Fluid Mech. 101, 79-95. 
GALBRAITH, R. A. McD. & HEAD, M. R. 1975 Eddy viscosity and mixing length from measured 

boundary-layer developments. Aero. &. 26, 133-154. 
HEAD, M. 1976 Equilibrium and near-equilibrium turbulent boundary layers. J .  Fluid Mech. 73, 

HERRING, H. J. & NORBURY, J. F. 1967 Some experiments on equilibrium boundary layers in 

HIRT, F. & THOMANN, H. 1986 Measurement of wall shear stress in turbulent boundary layers 

625-645. 

J .  Fluid Mech. 30, 241-258. 

using the turbulent energy equation. J .  Fluid Mech. 28, 593-616. 

91-108. 

1-8. 

favorable pressure gradients. J .  Fluid Mech. 27, 541-549. 

subject to strong pressure gradients. J .  Fluid Mech. 171, 547-562. 



370 P. R. Spalart and J .  H .  Watmufl 

INMAN, P, N. 6 BRADSHAW, P. 1981 Mixing length in low Reynolds number turbulent boundary 
layers. AIAA J .  19, 653-655. 

JOHNSON, D. A. & COAKLEY, T. J. 1990 Improvements to a nonequilibrium algebraic turbulence 
model. AIAA J .  28, 200&2003. 

JOHNSON, D. A. & KING, L. S. 1985 A mathematically simple turbulence closure model for 
attached and separated turbulent boundary layers. AIAA J .  23, 1684-1692. 

JONES, W. P. & LAUNDER, B. E. 1972 Some properties of sink-flow turbulent boundary layers. J .  
Fluid Mech. 56, 337-351. 

KONZELMANN, U. & FASEL, H. 1991 Numerical simulation of a three-dimensional wave packet in 
a growing flat plate boundary layer. In Boundary Layer Transition and Control Con,., 8-12 
April 1991, Cambridge. R. Aero. SOC. 

MCDONALD, H. 1968 The effect of pressure gradient on the law of the wall in turbulent flow. J .  
Fluid Mech. 35, 311-336. 

NAGANO, Y., TAGAWA, M. & TSUJI, T. 1992 Effects of adverse pressure gradients on mean flows 
and turbulence statistics in a boundary layer. Eighth Symp. on Turbulent Shear Flows, Sept. 
9-11, 1991, Munich. Springer. 

PATEL, V. C. 1965 Calibration of Preston tube and limitations of its use in pressure gradients. J .  
Fluid Mech. 23, 185-208. 

PERRY, A. E., HENBEST, S. & CHONG, M. S. 1986 A theoretical and experimental study of wall 
turbulence. J .  Fluid Mech. 165, 163-199. 

PERRY, A. E., LIM, K. L. 6 HENBEST, S. M. 1987 An experimental study of the turbulence 
structure of smooth- and rough-wall boundary layers. J .  Fluid Mech. 177, 437-466. 

RAI, M. M. 6 MOIN, Y. 1991 Direct numerical simulation of transition and turbulence in a 
spatially evolving boundary layer. 10th CFD Conf., June 2&26 1991, Honolulu: AIAA-91- 
1607. 

SAMUEL, A. E. & JOUBERT, P. N. 1974 A boundary layer developing in an increasingly adverse 
pressure gradient. J .  Fluid Mech. 66, 481-505. 

SCHLICHTING, H. 1979 Boundary Layer Theory, 7th edn. McGraw-Hill. 
SCHOFIELD, W. H. 1981 Equilibrium boundary layers in moderate to strong adverse pressure 

gradients. J .  Fluid Mech. 113, 91-122. 
SIMPSON, R.L., CHEW, Y.T. ,  SHIVAPRASAD, B.G. 6 SHILOH, K. 1981 The structure of a 

separating turbulent boundary layer. J .  Fluid Mech. 113, 23-90. 
SPALART, P. R.  1986 Numerical study of sink-flow boundary layers. J .  PluidMech. 172,307-328. 
SPALART, P. R. 1988a Direct simulation of a turbulent boundary layer up to R, = 1410. J .  Fluid 

SPALART, P. R. 1988 b Direct numerical study of leading-edge contamination. AGARD Syrnp. on 

SPALART, P. R. & LEONARD, A. 1986 Direct numerical simulation of equilibrium turbulent 

SPALAF~T, P. R., MOSER, R. D. 6 ROGERS, M. M. 1991 Spectral methods for the Navier-Stokes 

STEWART, R. W. 1956 Irrotational motion associated with free turbulent flows. J .  Fluid Mech. 1, 

STREETT, C. L. & MACARAEG, M. G. 1990 Spectral multi-domain for large-scale fluid dynamic 
simulations. Appl. Numer. Maths 6, 123-139. 

WATMUFF, J. H. 1990 An experimental investigation of a low Reynolds number turbulent 
boundary layer subject to an adverse pressure gradient. 1989 Ann. Res. Briefs, NASAIStanford 
Ctr for Turb. Res. 

WATMUFF, J .  H. 1992 A high-speed cross-wire data-reduction algorithm. Exp. Thermal Fluid Sci. 
(submitted). 

WATMUFF, J. H., PERRY, A. E. 6 CHONG, M. S. 1983 A flying hot-wire system. Exp. Fluids 1, 

WATMUFB, J. H. & WERTPHAL, R. V. 1989 A turbulent boundary layer a t  low Reynolds number 
with adverse pressure gradient. Tenth Australasian Fluid Mech. Conf., Dec. 11-15, 1989, 
Melbourne. 

Mech. 187, 61-98. 

Fluid Dyn. of 30 Turb. Shear Flows and Transition, Oct. 3-6 1988, Turkey. 

boundary layers. In Turbulent Shear Flows 5 (ed. F. J. Durst et aZ.). Springer. 

equations with one infinite and two periodic directions. J .  Comput. Phys. 96, 297-324. 

593-606. 

63-7 1. 



A turbulent boundary layer with pressure gradients 371 

WEI, T. & WILLMARTH, W. W. 1989 Reynolds-number effects on the structure of a turbulent 

WOOD, D. H. & WESTPHAL, R. V. 1988 Measurements of the free-stream fluctuations above a 
channel flow. J .  Fluid Mech. 204, 57-95. 

turbulent boundary layer. Phys. Fluids 31, 2834-2840. 




